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DUVERNEY, D., T AL.: High Accuracy of Automatic Detection of Atrial Fibrillation Using Wavelet
Transform of Heart Rate Intervals. Permanent and paroxysmal AF is a risk factor for the occurrence and
the recurrence of stroke, which can occur as its first manifestation. However, its automatic identification
is still unsatisfactory. In this study, a new mathematical approach was evaluated to automate AF identi-
fication. A derivation set of 30 24-hour Holter recordings, 15 with chronic AF (CAF) and 15 with sinus
rhythm (SB), allowed the authors to establish specific RR variability characteristics using wavelet and
fractal analysis. Then, a validation set of 50 subjects was studied using these criteria, 19 with CAF, 16 with
SR, and 15 with paroxysmal AF (PAF); and each QRS was classified as true or false sinus or AF beat. In
the SR group, specificity reached 99.9%; in the CAF group, sensitivity reached 99.2%; in the PAF group,
sensitivity reached 96.1%, and specificity 92.6%. However, classification on a patient basis provided a
sensitivity of 100%. This new approach showed a high sensitivity and a high specificity for automatic AF
detection, and could be used in screening for AF in large populations at risk. (PACE 2002; 25(Pt.

1]:457-462)
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Introduction

In the United States and Europe, one of four
cerebrovascular strokes (i.e., 75,000 strokes per
year) is associated with atrial fibrillation (AF).!
The incidence of AF increases, between the 65-74
and the 75-84 age groups, from 1.76 to 4.27 for
100-person-years, respectively, in men, and from
1.01 to 2.16, respectively, in women.? A preva-
lence of AF as high as 83% was described in a
population aged = 85 years.” The presence of AF
is a strong predictor of the occurrence and recur-
rence of stroke and of increased mortality after a
stroke on the short- and the long-term,*"® and the
risk associated with it is increased with age.”* Ac-
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cording to the cohorts studied, the absolute risk of
stroke attributed to AF varied from 3% to 67%,%
while the relative risk of stroke ranged from 1.0 to
6.9.77 Interestingly, the absolute risk of a silent
clinical stroke was in the same range.'*™'* Impor-
tantly, the type of AF, permanent or paroxysmal
(PAF), did not statistically modify the risk of
stroke occurrence.’”

All these figures make the tracking of AF a
major health priority.?® Several approaches have
been considered: intracardiac recordings at the
atrial level*'™** and at the conduction system
level,®® averaged atrial activity of esophageal sig-
nals,?**” and ambulatory electrocardiograph
(ECG). Such recordings have been shown to be the
best suited to detect rhythm abnormalities be-
cause of their easiness of use and of their unique
ability to detect frequent paroxysmal forms.

Several attempts have been made to create ef-
ficient methods for the recognition of AT in Holter
recordings. The simple Lorentz plot allowed
recognition of scattering specific to AF.2® Other
methods were intended to improve visual ECG
reading.”® Neural networks have been applied, an-
alyzing RR intervals®®*! and baseline fluctua-
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tions.” However, in Holter systems or event
recorders, the identification of AF still has to be
improved, published sensitivities ranging from
82.4% to 96.6% and specificities from 92% to
92‘3%'30.32

Due to its ability to precisely characterize at
any lime RR variability, the new methods of time
frequency analysis of RR intervals®® associated to
a fractal classification®® could prove to be a pow-
erful tool in AF detection.

Thus, the accuracy of AF recognition on stan-
dard Holter recordings was investigated using that
combination of mathematical heart rate variability
(HRV) analysis.

Methods
Population

Two sets of subjects were included in the
study and were randomized into two groups. First
a derivation set of 30 subjects, 15 with a sinus
rhythm (SR}, and 15 with chronic AF (CAF) estab-
lished a threshold criteria.

A validation set of 50 subjects was then ana-
lyzed using the previously established thresholds:
19 suffering from CAF, 15 from PAF, and 16 con-
trol patients with normal SR.

All subjects were recorded during 24 consec-
utive hours. The 24-hour Holter recordings were
directly digitized at a rate of 100 Hz on a recorder
(DuoHolter, Novacor, Paris, IFrance).

Recordings

The 24-hour Holter recordings, recorded us-
ing three standard leads, were analyzed and AF
episodes were first assessed by two independent
cardiologists using full interactive review and, if
necessary, edited. Thus, for each recording, a list
of consecutive properly labeled RR intervals was
obtained for further mathematical processing.

Mathematical Methods

RR Intervals were obtained from the Holter
system, each QRS being given a number to syn-
chronize the clinical and the mathematical identi-
fication of AF episodes.

Globally, the identification of AF required the
use of a cascade of two sequential complementary
analyses of RR intervals, the first one (discrete
wavelet transform [DWT]) identifying periods of
high HRV coefficient, the second one (fractal anal-
ysis) classifying these high variability periods into
physiological (SR) or pathological (AF) rhythms.

Thus, the HRV level was first established all
along the recording, using DWT of heart rate in-
tervals, to ensure a precise time localization of the
beginning and of the end of each high variability
event {Fig. 1). DWT, a discretion of the wavelet
transform,” analyzes a signal by a family of func-
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Figure 1. Heart rate variability of a paroxysmal episode
of atrial fibrillation analyzed using wavelet transform.
The importance of the variability, at each level of
frequency, is represented by the amplitude of the
coefficients (i.e., the amplitude of the vertical lines). One
can easily recognize the onset and the disappearance of
the high variability period in the central part of the figure
with, at the higher scales, a precision of two RR intervals
for the beginning and the end of the episode. However,
it has to be noted that high variability coefficients are
not related to atrial fibrillation only, as sinus rhythm can
also reach such variability. Thus this procedure
represents only the first step.

tions i, created by successive dilatation and
translation of a mother wavelet ¢, where

bik(x)=2"2y(2x—k)

with j,k ¢ Z. The transform is written:
Wil(j,k)=<f,y; x>, where <..> denotes scalar
products in L“(R] Fora s1gnal composed of 2! val-
ues, this transform leads to series of 21-1 coeffi-
cients written d;(k], giving the contnbutmn to sig-
nal projection at position 2k with scale 2.
Squaring the obtained coefficients provides the
power of the transformed signal for each time and
for each scale index. Different time areas are each
characterized by an homogeneous power level
computed from the highest scales of their DWT
(low j). In this study, a quadratic spline of order 3
wavelet transform was used.

As SR can present with HRV indexes as high
as those found in AF, a second step was needed.
That second step analyzed another HRV property
of AF using a fractal analysis on high variability
periods identified during the first step, which
classified these periods as SR or AF rhythm. When
calculating power spectral density (PSD) using
Fourier transform, a normal SR has a general trend
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in 1/f*, thus showing a single linear downslopping
pattern when plotted in a log-log plot (Fig. 2,
left).*® Conversely, the PSD of AF presents with
two different slopes: one in a high frequency band
(107'-10"* Hz) and the other in a low frequency
band (102-10* Hz);* the slope in the high fre-
quency band is higher (8 = 0) than those obtained
for SR (B = 1) (Fig. 2, right). To model the 1/f?
power law spectrum,® the concept of fractional
brownian motion (FBM} was applied. This non-
stationary autosimilar process has been widely
used as a model for biological processes, and par-
ticularly HRV.?® The autosimilarity property is
characterized by the Hurst exponent H, which is
related to B by the equation B=2H+1. The incre-
ment process of FBM can also be used to estimate
the Hurst exponent of the FBM process by means
of DWT with

var[d,j(n)] = 2@H-N-1g2(5_2H-1)

where d, are details coefficients at scale j. It Ieads
to the following equation:

logz[var(d,j(n)]] = (2H-1)j+f(H,)

Each of the previously identified high HRV
areas was individually reprocessed accordingly,
to calculate the associated Hurst exponent corre-
sponding to the FBM, using the HRV of that par-
ticular area as the increment process. As the dif-
ference between SR and AF lay on the highest
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frequencies, the Hurst exponent was computed
only with the five highest scales.

Two thresholds were associated with these
two steps. The first threshold was, thus, a level of
variability, set to 6.10° second, while the second
threshold, set to 0.7, was a value of the Hurst ex-
ponent.

Each threshold was computed using the
derivation set to obtain the combination giving the
best separation between SR and AF, and was then
applied to the validation set.

Software Tools

The signal processing was performed using
MATLAB (The Mathworks Inc., Natick, MA, USA)
and the statistical analysis with Statview 4.5 (Aba-
cus Concepts, Berkeley, CA, USA) on a Power
Macintosh. Results are presented as mean = SD
(m * SD).

Results
Derivation Set

There was a total of 1,334,296 beats in the SR
group (heart rate 64.5 * 8.2), and the mean record-
ing duration was 23.0 * 3.6 hours. There was a to-
tal of 1,131,696 beats in the CAF group (heart rate
62.9 * 9.4), and the mean recording duration was
20.0 = 3.8 hours.

Specificity of AF detection based on QRS
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Figure 2. Power spectral density of heart rate variability calculated using Fourier
transform, and plotted on a log-log plot. Sinus rhythm (SR) (left) bears a single linear
dowsloping pattern, while atrial fibrillation (AF} (right) presents with two different slopes.
The Hurt coefficient is also the slope of the high frequency band. This second step, applied
to HRV periods identified during the first step, allowed to separate appropriately SR and

AF rhythms.
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complexes reached 99.9%, since there were 223
false AF QRS in the SR group {Table I).

Sensitivity of AF detection based on QRS
complexes reached 99.7%, since there were 15
short episodes of 227 * 208 beats interpreted as
SR rhythm beats (Table I).

Validation Set

SR Group

There was a total of 1,083,537 SR beats in the
SR (heart rate 73.3 * 10.2) and the mean recording
duration was 15.4 * 1.1 hours.

Standard interpretation of 24-hour ECG
recordings of the 16 SR subjects did not reveal any
cardiac arrhythmia.

Two AF episodes were falsely detected in the
same subject (duration of 154 and 293 beats, re-
spectively; heart rate of 81.5 * 14.8 and 76.0 * 8.5
beats/min, respectively). Thus, specificity of AF
detection based on QRS complexes reached
99.9% (1,083,090 true-negative QRS vs 447 false-
positive ones [Table I]}.

CAF Group

There was a total of 2,064,197 AF beats in the
CAF group (heart rate 96.3 * 27.6) and the mean
recording duration was 18.8 * 4.6 hours. The
number of QRS complexes was 108,642 * 26,510
beats per patient.

A total of 40 episodes were falsely identified
as SR in seven patients (heart rate of 82.5 = 9.5, du-
ration of 399 + 372 beats). The longest undetected
period reached 2,075 beats and the shortest 120
beats. Sensitivity for AF detection reached 99.2%
based on QRS complexes (2,048,179 true-positive
QRS vs 16,018 false-negative ones [Table I]).

One patient accounted for 24 of these 40
episodes, while the other ones occurred in six
other patients. These false-negative episodes were
due to atrial flutter and to atrial tachycardia in, re-

spectively, 34 and 1 of the 40 cases. In five of the
seven patients, recognition of AF was delayed at
the beginning of the recording; however, the delay
in AF recognition was limited to 178.4 + 70 beats,

In spite of the undetected episodes, all pa-
tients were recognized as having AF, so that sen-
sitivity based on patients was 100%.

PAF Group

In the PAF group (recording duration 19.9 +
3.0 hours), there was 857,157 SR and 687,088 AF
beats; AF beats were distributed in 36 episodes
(Fig. 3) with a mean QRS number of 19,085 =
24,238 (range 52-94,990 beats) and a mean dura-
tion of 2.5 * 3.4 hours (range 34 s to 15 hours 36
min). During these episodes, the heart rate was
127.2 * 26 .5 beats/min (RR range 3.65-0.37 s).

Based on QRS identification, sensitivity
reached 96.1%, as 26,804 AF QRS over 687,088
were misclassified as SR; specificity reached
92.6%, as 63,565 SR QRS over 857,157 were mis-
classified as AF beats (Table I).

As all the patients of the group with PAF were
recognized as having AF, sensitivity, based on pa-
tients, was 100%.

In that group, there was false and excessive
detection of AF episodes: only 1 short of the 36
episodes remained undetected (length 260 beats,
HR 123.2 * 28.1 beats/min); there were 37 false
detections as 1,718 * 2,423 beats (range 147-11,
491).

For detected episodes, there were some de-
lays or advances in the recognition of episodes at
their beginning or at their end, and dropouts dur-
ing the episodes. At the beginning of the episodes,
detection was delayed in eight episodes by 91 *
95 beats (range 2—255); detection was premature
in 23 episodes by 186 = 621 beats (range 2—2,994).
At the end of the episodes, two were prematurely
interrupted (333 and 3,486 beats); 21 were abnor-

Table |
Accuracy of QRS Classification Accuracy
AF Beats SRBeats TrueSR False AF True AF  False SR
All All Beats Beats Beats Beats Sensitivity Specificity

Derivation Set

SR group — 1334296 1334073 223 - — — 99.9

CAF group 1131696 o - - 1128 291 3 405 99.7 —
Validation Set

SR group — 1083537 1083090 447 - —_ — 99.9

CAFgroup 2064 197 e — — 2048179 16 018 99.2 —_

PAF group 687 088 857 157 793 592 63 565 660 284 26 804 96.1 92.6

Sensitivity and specificity of the validation group were higher for permanent sinus rhythm (SR) or chronic atrial fibrillation {(CAF) than for

paroxysmal atrial fibrillation (PAF) episodes,
AF = atrial fibrillation.
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Figure 3. Duration distribution of the 36 episodes of
atrial fibrillation in the paroxysmal atrial fibrillation
group. The mean * SD duration was 2.5 * 34 hours
{range 34-57,298 s). The fourth episode (*, duration 126
s) remained undetected.

mally prolonged with a delay of 60 = 103 beats
(range 10—429).

False interruption were observed in 15 cases
during PAF episodes, of which 13 occurred in the
same patient, with a duration 0f 1,484 * 151 beats;
the length of the last ones, in two different pa-
tients, were 781 and 2,001 beats, respectively.

These false-negative episodes were due to
atrial flutter or atrial tachycardia in, respectively,
5 and 8 of the 14 cases.

Discussion

When applied to a validation group, the au-
thors’ algorithm associating wavelet transform
and fractal analysis provided a sensitivity of
99.2% (CAF group) for the detection of AF QRS
complexes, and a specificity of 99.9% (SR group).
Its accuracy was slightly less in the PAF group,
with a sensitivity of 96.1% and a specificity of
92.6%. However, when based on patients, sensi-
tivity was 100% in the CAF and in the PAF group.

Intraatrial recordings have often been used to
detect AF, and analyses of the atrial electric activ-
ity at the esophageal level®® with sensitivity and
specificity ranges of 100~95.5% and 95-100%, re-
spectively. These recordings were not used, as the
goal of the study was AF recognition based on
noninvasive standard Holter recordings.

For the purpose of automatic detection,
Holter recordings have been analyzed by neural
networks,” which reached a sensitivity of 92%
and a specificity of 92.3% in QRS recognition. Us-
ing a neural network fed by RR interval informa-

PACE, Vol. 25, No. 4

tion and morphological analysis of the baseline
tracing, Cubanski et al.,** working on fixed groups
of ten consecutive QRS, found a sensitivity of
82.4% and a specificity of 96.6%. Thus, the sensi-
tivity and specificity of AF detection by the meth-
ods used in the present study favorably compare
with prior studies.

Study Limitations

There are some limitations. First, the evalua-
tion of the two parameters, the variability index,
and the Hurst exponent needs at least 64 consecu-
tive beats to be established, which limits the power
of detection of short episodes. Second, the use of
HRYV analysis alone is sensitive to arrhythmias that
can alter HRV, notably supraventricular extrasys-
toles, supraventricular tachycardia, and other
kinds of arrhythmias, Thus, false-positive detection
can be increased due to the presence of numerous
isolated or grouped supraventricular arrhythmias,
inducing important nonphysiological HRV. As a
matter of fact, false-positive detection occurred in
0.04% of the QRS of the SR group, and in 8.0% of
the QRS of the PAF subjects. The false-positive
QRS could be correctly reclassified by analyzing
ECG tracings simultaneously recorded.

On the contrary, false-negative detection can
occur in atrial arrhythmias, like paroxysmal
supraventricular tachycardia or atrial flutter, due to
the relative regularity of such rhythms. In clinical
settings, a false-negative detection is more prob-
lematic than a false-positive one, since automatic
detection does not keep the tracing for the user,
which precludes any visual correction. In this
study, false-negative episode detection was unfre-
quent with a unique PAF episode not exceeding
260 QRS. Improvement of the algorithm could fur-
ther decrease its false-negative detection rate, how-
ever, at the cost of a decrease in specificity.

Conclusion

As more and more strokes are being recog-
nized as the first manifestation of AF, the authors'
algorithm appears well suited to automatically
screen for AF in large populations. This is of par-
ticular importance in the elderly, in whom AF,
paroxysmal and chronic, is frequent and repre-
sents a major risk of stroke. In that view, imple-
mented on already available long-term event
recorders bearing automatic ECG analysis, the al-
gorithm could help to face an important health
priarity by improving screening for AF and pro-
viding preventive measures before dramatic com-
plications.
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